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EFFECTIVE CONDUCTIVITY OF MATRIX COMPOSITES 

V. A. Buryachenko and V. A. Murov UDC 532.529.5:536.24.01 

The effective-field method is generalized to the problem of the conductivity of 
microhomogeneous media having a random structure, with allowance for the binary 
interaction of inclusions. The calculations of the effective conductivity by 
various methods are compared with experiments on the electrical and moisture 
conductivity of composites. 

Determining the relation between the macroscopic properties of a material and its micro- 
scopic structure is a very important problem of physics and mechanics. This pertains to 
the transport properties of microinhomogeneous media, corresponding to processes of heat 
and mass transfer, the electric conductivity and permeance, and filtration of a Newtonian 
liquid in undeformable cracked-porous media [1-4]. The equations describing the steady- 
state conditions of these processes are mathematically equivalent. If the linear scale of 
the field of the average motive force of the transfer process in a heterogeneous medium con- 
sisting of a homogeneous matrix with randomly distributed inclusions is substantially great- 
er than the characteristic size of the inclusions, it is natural to describe the transfer 
process within the framework of the continuum approximation. It is then sufficient to use 
the effective conductivity coefficients (such as the coefficients of thermal conductivity 
and diffusion, electrical conductivity, dielectric constant, permeance, Darcy's constant, 
etc.) for the medium as a whole. 

Four groups of methods for determining the effective coefficients are known. The first 
group is that of model treatments, replacing the real stochastic structure of composites 
by a regular structure [5] or some particular cases of random structures [6]; percolation 
models, in particular, belong to this group [7]. The perturbation method [3, 4] gives cor- 
rect results when the differences in the conduction coefficients of the ocmponents of a 
composite are small. The variational method [8, 9] is invariant under randomly oriented 
inclusions and gives too wide a spread of estimates of the effective properties for highly 
inhomogeneous materials. The fourth group consists of methods based on expressing the solu- 
tion of the steady-state transfer equation with random rapidly oscillating coefficients in 
terms of the Green's function of the analogous equation for a homogeneous medium. Depending 
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on the numerous ways of closing the integral equations obtained, the methods in this case 
are classified as the method of the effective medium [10-12], the singular approximation 
method [4], the method of arbitrary moments [13], and the Mori-Tanaka-Eshelby method of the 
average field [14-16]. These are virtually one-particle methods, in contrast to the per- 
turbation [4] and multiparticle methods [17], which are correct only for small differences 
between the properties of the components and low inclusion densities. Below we develop an 
effective field method, which makes allowance for the multiparticle interaction of inclu- 
sions and was proposed earlier for solving a broad class of problems of microinhomogeneous 
media: elasticity, thermoelasticity, ideal plasticity, and viscosity of suspensions [18-21]. 
The method is based on the solution of problems for one inclusion and a finite number of 
inclusions in an unbounded matrix and a self-consistent procedure for closing the correspond- 
ing equations averaged over the ensemble of inclusions. 

i. Let us consider an infinite homogeneous matrix with conductivity tensor k0, which 

contains the random set X = (Vk, Xk, mk) of ellipsoids v k with characteristic functions V k 

and centers x k forming a Poisson set, semiaxes i i a~a~) a ah(ah> / set of Euler angles mk I, 

and conductivity tensors ko@k1(x)=ko+k~>(x) for x e Vk; generally speaking, the tensor 

k1(k)(x) is not uniform over the volume of the inclusion and k1(k) = 0 for x]v k. The steady- 
state transfer equation (Fourier, Ficks, Ohm, Darcy, etc.) in a microinhomogeneous medium 
has the form 

VkoVU = - -  VkWU, ( 1 ) 

where Y is the gradient operator; u is a potential (e.g., temperature); a uniform field 
s(Sw) = ~0, e--Vu is prescribed at the boundary 8w of region w containing a statistically 
large number of inclusions. Here and below we use the standard notion of tensor analysis: 
k 0 and k I are tensors of the second rank k 0 = k0iSij, k I = kli6ij) (no summation over i); 

the components of isotropic tensors are labeled with an upper index 0, e.g., k0 ~ = k0i (i = 
i, 2, 3). The solution of (i) can be expressed in terms of the convolution of the fundamen- 
tal solution G with a nonzero right side. Then differentiating and centering the result- 
ing integral equation with the assumption that the distance from x to the boundaries of the 
region is substantially larger than the characteristic size of the inclusions, we obtain 

8 (x) = < 13 ) -@ I g (x - -  tff)(k 1 (/j) 8 (~]) V (~]) - -  \/~leV ) ) d/j, ( 2 ) 

where V(g)= ~ Vi(y), U(x--F)~-vvG(x--g); for an isotropic medium G(x - y) = (4~k0 ~ 
i=i 

In (2) and below <.> and <-lxl> denote the mean and arbitrary mean over the ensemble of the 
ergodic field X(" Ix I) (or over the macroregion w) with the condition that an inclusion exists 
at point x I. The arbitrary means are calculated by using a binary function of the distribu- 
tion ~(Vm]V n) is the probability of the m-th inclusion being located in region v m when the 
n-th inclusion is fixed. Since the inclusions do not intersect each other, ~ (Vm]Vn)-----0 

f a 3 
inside the "correlation well" and Vmn ~ is an ellipsoid with orientation m m and axes am+ 
and characteristic function Vmn ~ . When the inclusions are uniformly distributed we have 

0 ~(vm]v~) = ~ (~m)(l -- Vmn) [ ~  (Irl)(mes w) -I, (3) 

where from the normalization condition <~(~m)> = i. The results of the Kirkwood, hypervalued, 
Percus-Yerwick, and other approximations [22] can be used directly for macroisotropic struc- 
tures once the fucntions fmn(lr]) have been found; fmn(lrl) is assumed to be known within 
the framework of this study. Use is often made of a simpler approximation (which will be 
used here to obtain an analytical result) 

f . ,~ (Irl) = n~ f o r  v~  ff X. ,  ( 4 )  

where n v is the calculated concentration of inclusions v of component X v and is related to 

the bulk concentration by c~ = 4/3 aS a~ a~ nv., 

To find the effective conductivity of the medium we average the local F = -kVu, relating 
the flux and the potential gradient, over the region w: <F> = k0<Vu> + <k~VuV>. Then 

k . = k 0 + i R . > ,  < k l v u V > - - - - R . < V U >  

Thus .  i n  o r d e r  t o  d e t e r m i n e  k ,  we mus t  f i n d  t h e  t e n s o r  R ,  f rom (2 )  and ( 5 ) .  

(5) 
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We fix an arbitrary realization of the field X and consider the field [k(X), x e v k 
(henceforth called the effective field), in which the inclusion v k is icoated: 

(x) = < s > + f U (x - -  v){V (g; x) k~ (v) s (v) - -  < ,~,W > } dvo ( 6 )  

where V(y; x) = V(y)\Vk(x). 

2. To close the system (6) and then find its approximation solution we adopt the hypothe- 
sies of the effective-field methods [18-21]: I) every ellipsoidal inclusion v is in a uniform 

field el; 2) each pair of inclusions v i, vj is in its own uniform field ~ij, which does not 

depend on the properties of these inclusions. The physical meaning of hypotheses 1 and 2 
is explained in [18, 20]. 

For the ellipsoidal shape of the inclusion v we obtain from (2) and (6) the algebraic 
equation 

< 8 (x) > ~-- < u (x) > ~ < h (x)~ (x)v~ (x) > ~ = < 7~ >, (7) 

where we have adopted the notation <(')>i = /(')(x)Vi(x)dx and used the Eshelby theorem 

<U(x)> i = /U(x - Y)Vi(Y)dy = -Pi---Sk0 -I = const for x e v i. The tensor S of rank two is 

analogous to the Eshelby tensor in the theory of elasticity and depends on the shape but 
not on the ellisoid size v. For example, for an isotropic matrix 

ala2a'~ 7 ds 1/' ' S .  . . . .  , A (S) = ((aO ~ + s)((a~) ~ § s)((a~F - -~ s) ( 8 )  
2 ~, (a ~+sPA(s)  

(no summation over i), Sij = 0 at i r j. Analytical expressions for the tensor S for a sphere, 
elliptical cylinder, and oblate and prolate ellipsoids are given in [12, 14]; in particular, 

for a sphere SIz = $22 = $33 = 1/3. 

The dependence <k1(x)s(x)Vi(x)> i on <el> must be known in order to estimate the effective 
tensor in (5). Since problem (7) is linear, there exists a constant tensor A of rank two 
such that 

< ~(x) > ~ = Ai < ~ >, (9) 

< k~(x)~(x)  > ~ = R~ < ~ > ,  ( 1 0 )  

where R i = -Pi(Ai - I)vi, I is a unit tensor of rank two and the bar above the region denotes 

its measure: ~i = mes v i. When deriving (i0) we assumed that kl(x), generally speaking~ 
" ~ ( i )  is not uniform over the volume of the inclusion; for a homogeneous inclusion kz(x) = ~i = 

const and from (7) we have 

Ai : [! + P~kl) , R~ : (ii) 

(no summation over i). The value of A i can be found numerically in the general case of an in- 
homogeneous inclusion. Analytical solutions of Eq. (i) are known at present for a two-layer 
inclusion consisting of isotropic ellipsoids in an isotropic matrix. In [15] the problem 
for a two-layer spheroid was solved in spheroidal coordinates, using Legendre polynomials. 
The problem of a layered ellipsoid in a uniform coordinate-linear field ~(x) was solved by 
using the Ferrers potential [23]. As an example let us consider the limiting case of the 
results of [15, 23], the existence of a resistance on the surface of a homogeneous ellip- 

soid, i.e., when the boundary conditions on the surface of the inclusion have the form 

8u- 8u + 
ko an - - ( k ~  an - - ~ ( u - - - u + ) ,  ( 1 2 )  

where n is the outer normal of the ellipsoid; u + and u- are the limiting values of the poten- 
tial inside and outside the ellipsoid, near the surface of the inclusion. The case ~ + 0 
corresponds to "adiabatic" boundary conditions and $ ~ ~ corresponds to "isothermal" boundary 
conditions. The boundary condition (12) is mathematically equivalent to the surface of a 
homogeneous ellipsoid having an infinitesimally thin layer with thickness l<<a 3 and con- 
duction coefficient k = ~/l . Transforming the results of [24] for a spherical inclusion, 
we obtain 
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0 0  0 R~ = 3k~ [k~ + (k? + ko) ko/pa][k, + 3k~ + (2k? + k]) k~/~a] -1. (13) 

The error that arises when the layer of finite thickness on the surface of the inclusion 
is replaced by the boundary condition (12) was evaluated in [15]. 

When estimating k, below we use the averaged tensor R i over the possible orientations 
m i of the inclusion: <Ri> m. In particular, for an infinitesimal concentration of identical 
inclusions we have 

k, = ko + < R > ~n ( 1 4 )  

and <R>mn has the connotation of the main term in the power expansion of k, in the inclu- 

sion concentration <V>. Formula (14) is the limiting formula for the effective medium [I0- 
12], Mori-Tanaka-Eshelby [14-16], and other [25] methods. For example, for ideally conduct- 
ing (ki ~ = =) and nonconducting (ki ~ = -ki ~ spheroids with an equiprobable orientation in 
an isotropic matrix we obtain 

< /~ ~ 0 kO 311 -}- l / 3  - 0 -- ( 1 5 )  ~', < R > ~ k0 5--3311 
S n  (1 -- Sii  ) 1 - -  Sl l  

where the I axis of the local coordinate system, made to coincide with the major axes of 
the ellipsoid, is the symmetry axis of the spheroid. 

3. The solution of the problem of two inclusions in an unbounded matrix is simplified 
by using hypotheses I and 2. Averaging Eq. (6) over the inclusion volume v i we obtain 

< 7 ' ---v7 ~ ~ U (x - -  g) Vj (y) V~ (x) < k~ (g) ~ (v)lx > J d x @ =  / ~ j  > . ( 1 6 )  

Using the solution (i0) for a single inclusion in a field <ej>, we rewrite (16) as 

- -  _ ^ 

< ;~'i > = T ( x I - - x j )  R j /~ ' j>  -{- < g i i ) ,  

v (x~ - x j) = (6~)) ~ j ,f u (~ - j) v~ (x) v~ (y) ax@, 
w h e r e u p o n  

2 ^ 
R i  < 8-~ > ~-  X ZiJRJ < $iJ > ' 

/'=1 

where the matrix Z = (Zij) (i, j = i, 2) has the inverse Z -I with elements Zmk -i (m, k = 

i, 2) in the form of submatrices 

--I Zml, = I6,~h -- (1 - -  6,.~) T (x~ -- Xh) R~ (m, k = 1, 2). 

The solution (17) can also be constructed by iteration methods 

-- ^ 
Ri < ~i ) -= ~ (TRjTRI)~(TRJ) m < ~S > �9 

h~0  m=0 

( 1 7 )  

(18) 

As an approximation of the tensor T we can use the point approximation of the inclusion 
size, which is asymptotically exact when the inclusions are infinitely apart: 

T (xi--xi)  = U (xi--xj) .  ( 1 9 )  

Equation (19) is exact for spherical inclusions with possibly different radii in an iso- 
tropic medium. 

An estimate by means of the expression 

2 

t~j = j" Y (x~ - -  xi).~ (V;Ivi) "~ Z j R j d x f  (20)  
7--1 

will be needed below. From (18) and (20)we obtain a representation for the components of 
the isotropic tensor Lij as a rapidly divergent series 

L~j -~ cj ~ ~1 8~z( ( R~ ) co ( Ri ~ co)v( (, Ri ~. ~)q L2p+q ~ r2qoj (r)&" ( 2 1 )  
~ 9, rash ,2p+q-v+q+l-p ra(ev+q)tlj ...... o) vi vi (2p + q) J , 3 p= l  q--0 " 

al  ,, a 2 
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where the coefficients L n are determined from the recurrence formulas L n = 2Ln_ I + 3(-i) n-l, 

L l = 3. The value of Lij can be determined by an equivalent method from Eqs. (16), (17), 
and (20): 

( r ) i - -  L i 3 ( e d )  = ( e ) - - P ~ ( ( k 1 8 )  ~ - - ( k ~ s ) ) .  ( 2 2 )  
i 

In [17] the problem of two identical spheres in a uniform field ~ij prescribed at in- 
finity was solved exactly only by using bispherical coordinates and Legendre polynomials; 
the solution was obtained in the form of a slowly convergent series, whose first terms for 
Lij (22) have the form 

/ ?2 3 k~ 4-, k~ 7 a 
L ~  = c , 7 ~ -- -~-... , 

4 16 2k?- 3k  ' 64 , ) 

~o ( 2 3 )  

The graphs of (Lij~ ~ log(kz ~ + k0~ ~ calculated from the approximate (21) and exact 

(23) formulas are shown in Fig. i. Formula (21) can be assumed to be satisfactorily accu- 
rate. The problem for two spherical isotropic inclusions with different parameters and prop- 
erties was solved in [26]. 

4. The use of hypotheses 1 and 2 and the solutions (i0) and (17) of the problems for 
one and two inclusions makes it possible to transform Eq. (6), averaged over the ensemble 
X('Ixl), into a system of linear algebraic equations in <~7i > (for details see [18-20]): 

\; N 

. . . .  ' "~ i T (.q -- .v,,) R,. ( f v v - - I ) ( l - - g ~ v ) n v d x ~ ( ~ v '  @ ( 2 4 )  
V ~ I  V ~ I  

N 

where we have assumed that ~ij(x) = ~j at x e vi, N is the nttmber of components in the filler. 
From (24) we find 

N 

< e i )  = D ~ < s ) ,  D i =  %~ Yi;, i =  1 . . . . .  N, 
j : ~  (25) 

where matrix Y with elements in the form of submatrices Yij (i, j = 1 ..... N) has the inverse 
y-1 = (y-1)mk(m, k = 1 .... N) with element-submatrices 

N 

. . . .  (Vmk) R,,nl, = . - -  ~.~ Y , .  0 d & . )  P - -  
v = t  (26) 

0 - -  j~ T (x, , ,  - -  xh) Rh [ Z = .  - -  I ]  nt, ( 1 - -  V . , k )  dxk. 

~q 

o,s 

o,e 

1 o,l 

-7 -2 -1 0 

I 

-- i 

D 0 0 
1 21_~(kD+k1)/ko 

Fig. i. Results of calculation from 
formulas (23) (curve i) and 21 (curve 2) 
in dimensionless coordinates. 
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Fig. 2. Experimental data (points) and calculated curves of 
the relative changes in the electrical conductivity: i, 2, 
3, 4, 5) calculation from formulas of [12] and formulas (30), 
(29), (31), and the formula of [13]. 

Fig. 3. Experimental data and calculated curves of the rela- 
tive change in the moisture diffusion coefficient in a com- 
posite: curves i and 2 were calculated for constant and vari- 
able moisture diffusion coefficients in the matrix. 

We simplify the 
ing the tensors with their means <Rj> W. Expressions (25) are simplified for a one- 
component filler: 

< G > = O1 ( e ) , D~ = ([ - -  P (V~) ( ~1111 > - -  Lll)-I  , 

operations of averaging over the orientations ~ in (18) and (26) by replac- 

From (5) and (25) we find an expression for the effective conductivity 

N 

i ~ l  

( 2 7 )  

( 2 8 )  

We compare the experimental data of [27] and various methods of calculation of k, on the 
example of the electrical conductivity of a composite with an isotropic matrix and an ideal- 
ly conducting spherical inclusion of one size. Then from formulas (23), (27), (28) and 
(21), (27), (28) we find the relative change in the components of the isotropic tensors, 

( 2 9 )  

(30) 

(31) 

in similar fashion formula 

k~  ~ = 1 + 3c/ (1  - -  1,304c),  

k~ = 1 + 3c/(1 - -  1 , 5 o 3 4 ;  

k~ = 1 + 3c/(1 -c) 

was obtained by the Mori-Tanaka-Eshelby [14, 16] and effective medium [Ii] methods and 
accord with the lower boundary of the Hashin-Strickman form [4]; the difference between the 
last formulas and (29), (30) is attributed to the disregard of the binary interaction of 
inclusions and inclusion of the term Lll in (27). Estimates were also obtained by the method 

of [17], taking the binary interaction of inclusions into account, on the assumption that 

= go, k,~ ~ = i + 3c + 4.51 c2; according to the method of arbitrary moments k,~ ~ = 

i + 3c(I -- c/3)/(i -c) [13] the formula k,~ ~ = i/(i - 3c) [12] accords with the formula 
of Landauer [2]. We see from Fig. 2 that calculation from the proposed relations (29), (30) 
agree better with the experimental data [27] than does calculation from the formulas of 
[2, 4, ii, 12, 14, 71. 

The above theory of the estimation of effective properties makes it possible to obtain 
estimates of the changes in the properties and structure of the components during the pro- 
duction of a composite. For example, Fig. 3 shows experimental data on the effective moisture 
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diffusion coefficient at 60~ in a composite medium. The composite, based on ED-20 epoxy 
resin and a filler [KP-3 ground pulverized quartz, with (a= (5-10)-10 -3 m)], was hardened 
with polyethylene polyamine at room temperature. For the studies we prepared samples in 
the form of wafers with a thickness of 3-10 -3 m by hardening the compositions in poly- 
ethylene molds. The diffusion coefficients were determined by the method of steady-state 
permeability. Curve i, k,~ ~ calculated from formulas (23), (27) and (28) with kl ~ = 
-k0 ~ for spherical inclusions of one size is not in agreement with the experimental data; 
the explanation for this is that the matrix is cross-linked to a lesser degree when the 
filler is introduced. This has been determined experimentally from electron-microscopic 
data. We then assume that the diffusion coefficient of the matrix increases with the sur- 
face area of the filler according to the formula k0~176 = (i - k0 ~) exp(-~c) + k0 ~. 
The empirical parameters ~ = 5.1 and k0 ~ = 2.2 are found from the condition of the best rms fit 
of the experimental to the calculated curve 2 of the relative change in the diffusion coeffi- 
cient, k,~176 

NOTATION 

k0, conductivity tensor; kl (k), jump in the conductivity tensor; u, potential; Vk, 
characteristic fucntion; Vk, ellipsoidal region; e = Vu, potential gradient; <(o)>, opera- 

tion of averaging over the ensemble of inclusions; G, fundamental solution; U = VVG;i~(VmlVn) , 

arbitrary inclusion distribution density; ~, density of orientational distribution of inclu- 
sions; ~mn, numerical concentration n of inclusions at a fixed inclusion m; cv, bulk concen- 
tration of inclusions of component v; k,, effective conductivity; Ai, potential conductivity 
tensor at i-th inclusion; and Z, Y, D, matrices describing the inclusion interaction. 
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